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Fig. 1. High-contrast patterns produced by our approach. Note how the profile of the oscillations smoothly transition from a rectangular wave (20% black), to
a square wave, to a triangular profile and finally a sine wave. At the same time, the orientation of the waves changes from left to right. The field visualized
here is purely procedural. It is obtained by feeding our phasor noise into periodic profile functions (shown in blue), that are interpolated from left to right.

Procedural pattern synthesis is a fundamental tool of Computer Graphics,
ubiquitous in games and special effects. By calling a single procedure in
every pixel – or voxel – large quantities of details are generated at low cost,
enhancing textures, producing complex structures within and along surfaces.
Such procedures are typically implemented as pixel shaders.
We propose a novel procedural pattern synthesis technique that exhibits
desirable properties for modeling highly contrasted patterns, that are espe-
cially well suited to produce surface and microstructure details. In particular,
our synthesizer affords for a precise control over the profile, orientation and
distribution of the produced stochastic patterns, while allowing to grade all
these parameters spatially.
Our technique defines a stochastic smooth phase field – a phasor noise –
that is then fed into a periodic function (e.g. a sine wave), producing an
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oscillating field with prescribed main frequencies and preserved contrast
oscillations. In addition, the profile of each oscillation is directly controllable
(e.g. sine wave, sawtooth, rectangular or any 1D profile). Our technique
builds upon a reformulation of Gabor noise in terms of a phasor field that
affords for a clear separation between local intensity and phase.
Applications range from texturing to modeling surface displacements, as well
as multi-material microstructures in the context of additive manufacturing.

CCS Concepts: • Computing methodologies→ Texturing.

Additional Key Words and Phrases: procedural, textures, noise, Gabor, pat-
tern, texture synthesis
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1 INTRODUCTION
The Computer Graphics community is in a perpetual quest to ex-
tend the range of patterns that can be generated at low memory
and computational costs, from a single procedure. Most techniques
rely on procedural noises [Lagae et al. 2010], which generate scalar
fields with prescribed frequency content. These base noises are then
combined through various functions to produce interesting patterns
[Ebert et al. 2003].

A key limitation of standard procedural noises is the lack of direct
control over the local characteristics of the patterns, such as contrast,
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sharpness, as well as the range and histogram of values within a
neighborhood. A degree of control is obtained though thresholding
a base noise, or through lookup tables (color maps) reshaping the
global histogram. Unfortunately, noise patterns generally exhibit
variations such as local loss of contrast and undesired variations
in scales and orientations. These variations make it very difficult
to obtain an overall consistent appearance through lookup tables,
and it is rarely possible to find parameters producing a consistent,
stable aspect, such as the waves shown in Figure 1. Lookup tables
also cannot distinguish between the ’sides’ of an oscillation, pre-
venting the synthesis of patterns with asymmetric aspects, such as
the sawtooth wave in Figure 1, middle.
In this paper we propose a procedural synthesizer that has the

ability to generate patterns exhibiting precisely controllable oscilla-
tions, in terms of their profile shape, minimum/maximum values,
orientation and frequencies (scale). The synthesizer can freely grade
the pattern parameters, within planes (2D) and volumes (3D). Our
noise also works along surfaces – see surface noise in [Lagae et al.
2009] – which affords for the synthesis of patterns along objects,
changing their appearance and surface roughness profiles. We ex-
plore the various possibilities in Section 4. Thanks to its procedural
nature, our approach is implemented as an efficient OpenGL shader.
Contrary to most existing techniques, our procedure does not

directly generate a scalar field of values. Instead it generates a phase
field designed to be subsequently modulated through a periodic
function. This phase field – our phasor noise – is such that, once
seen through the periodic function, it produces a pattern with the
specified frequency and orientation. In addition, the shape of the
oscillation profile remains that of the periodic function without any
undesirable fluctuations. This affords for a precise control over the
shape of the produced stochastic structures, illustrated in Figure 1.

We achieve this by reformulating Gabor noise [Lagae et al. 2009]
as the explicit product between an intensity field, and a modulated
sine wave. The phasor noise is obtained as the instantenous phase of
the Gabor oscillations. Its name originates from our reformulation,
which exposes a sum of phasors1 within Gabor noise.

Feeding a phasor noise into a sine wave produces a signal that
ressembles Gabor noise, has a similar spectrum but oscillates with
a corrected, uniform local contrast (see Section 3). This can serve as
a fundamental harmonic to reproduce any 1D periodic profile by an
approach akin to inverse Fourier transform (i.e. additive synthesis).
Profiles are synthesized as weighted sums of integer harmonics of
the base pattern, see Figure 13.

Being able to orient synthesized patterns while controlling their
profile and distribution is especially well suited for the definition
of patterns such as hatches, stripes, cracks, ridges, scales and rip-
ples. Our technique also finds applications in modeling for additive
manufacturing, for sculpting grip patterns or for precise control of
proportions in multi-material mixtures.
Contributions. In summary, our contributions are:

• The definition of phasor noises, enabling pattern synthesizers
with precisely controlled oscillation’s profiles.

• An analytical separation of Gabor noise into an intensity and
a modulated sine wave component.

1See e.g. https://en.wikipedia.org/wiki/Phasor.

• A numerical analysis of the resulting signals, in terms of their
spectrum and spectrum of variance.

• A complete implementation with available source code.

2 PREVIOUS WORK
Procedural noises [Lagae et al. 2010] have a long history in Com-
puter Graphics and are widely used in applications ranging from
games to movie special effects. They allow for arbitrary amounts of
content to be synthesized at low memory and computational costs.
Procedural noise methods focus on producing seemingly random
patterns in the spatial domain, while providing an accurate control
over their frequency content. A variety of 2D patterns – textures –
are obtained by combining layers of noises having different spectral
contents [Ebert et al. 2003].
One of the most recent development in this area are techniques

based on the so-called Gabor noise [Lagae et al. 2009]. A Gabor
noise is an instance of a sparse convolution noise [Lewis 1984, 1986],
where a kernel is convolved in the spatial domain with a random
impulse noise. An important property is that the spectrum of the
obtained noise is that of the kernel. Thus, precisely controlling the
kernel spectral content translates to a similar control over the noise.
The Gabor kernel offers such a precise, elementary control.

Several improvements and variants of Gabor noise have been
proposed, for isotropic noises [Lagae et al. 2011], filtering of solid
(3D) noises [Lagae and Drettakis 2011], fitting Gabor noises to exam-
ples [Galerne et al. 2012; Gilet et al. 2010], as well as modifying the
underlying formulation for faster synthesis [Tavernier et al. 2019]
and explicit manipulation of phase [Gilet et al. 2014].

The original Gabor noise [Lagae et al. 2009] supports two impor-
tant features in our context. First, the ability to spatially grade the
noise content, freely changing frequencies and orientations. Sec-
ond, the basic formulation can be applied in 2D and 3D, but also
along any surface equipped with a tangent field. This is achieved
without the need for a global parameterization (texture coordinates).
Preserving these properties while manipulating phase is especially
difficult. For instance, the formulation by Gilet et al. [2014] localizes
kernels at the nodes of a grid to synchronize their phases. While this
provides excellent results in the context of 2D texture synthesis, the
phase synchronization cannot be preserved through an orientable
field or along a surface.

loss of contrast

interferences

When it comes to synthesizing
highly contrasted patterns, Gabor
noise suffers from two interrelated de-
fects: local loss of contrast and inter-
ferences, as illustrated in the Figure
inset. To our knowledge, these have
been identified and studied for the
first time by Neyret and Heitz [2016],
who provide deep insights regarding
these defects and focus on analyzing and filtering them. In particular,
they show that the spectrum of variance of the noise – the Fourier
transform of the squared signal – characterizes the local loss of
contrast. We follow their insight and rely on the spectrum of vari-
ance to analyze the properties of our noise. We provide additional
discussion later in the paper.
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Procedural textures in additive manufacturing. The procedural tex-
ture synthesizer we propose is general purpose, but one application
we aim at is additive manufacturing, and more specifically for the
synthesis of multi-material patterns.
There are several major challenges when considering pattern

synthesis for AM. First, the patterns should afford for a wide range of
effects that the user should be able to freely choose from. In addition,
it is expected that the patterns can be progressively spatially graded,
triggering different effects in different regions of space.

Second, the patterns should be very efficient to compute. In most
cases, thousands of high-resolution slices have to be generated for
a single part and sent to the printer. It is also important for the user
to be able to preview the result beforehand.

To address these challenges, one line of research advocates for the
use of procedural approaches, inspired from procedural texturing
in Computer Graphics [Ebert et al. 2003; Livesu et al. 2017]. This is
especially interesting to grade materials having anisotropies: the
absence of underlying grid affords for complete freedom in orienta-
tion [Martínez et al. 2017]. Several frameworks have shown how to
exploit procedural synthesis to achieve efficient process planning
in AM [Vidimce et al. 2016; Vidimče et al. 2013].

Our work fits well within this trend. However, rather than propos-
ing a specific type of structure, we seek to develop a novel type of
procedural texture generator well suited for pattern synthesis in
modeling for additive manufacturing. In particular, we seek to de-
sign multi-material patterns akin to laminates, with precise control
over the material mixtures. We also consider surface displacements,
with the ability to produce different roughness profiles.

3 PHASOR NOISE
We now describe our approach in details, and analyze its properties.
Applications and results are described in Section 4.

The crux of our technique is to rewrite a Gabor noise as a single
sine wave, with a clear separation of intensity and modulation:

GaborNoise (x) = I (x) sin (ϕ(x)) (1)

where x is the point of evaluation. For conciseness we denote Gabor
noise as G(x) in the remainder of this paper. The phasor noise is the
instantaneous phase ϕ of the rewritten Gabor noise:

PhasorNoise (x) = ϕ(x) (2)

As we will see, the phasor noise is the argument (angle) of a com-
plex valued version of Gabor noise, which is obtained by summing
phasors2 representing the sine waves of the Gabor kernels.
This change of formulation is defined in the most general case

of Gabor noise, where kernels of different frequencies, orientation,
bandwidth and amplitudes may be summed and where all these
parameters can be spatially graded. Thus, phasor noise works in 2D,
3D and for surface noise [Lagae et al. 2009]. It is a pure procedural
function that can be implemented in a GLSL pixel shader.

Having clearly separated the instantaneous phase from the noise
intensity has two direct benefits. First, it affords for the definition
of a noise that perfectly oscillates without local loss of constrast,

2See e.g. https://en.wikipedia.org/wiki/Phasor.

Symbol Definition Introduced
G (x) Gabor noise Eqn (1)
ϕ (x) phasor noise (instantaneous phase) Eqn (2)
φ (x) phase field - phase shift Eqn (7)
I (x) intensity field Eqn (8)
P (x) phasor sinewave sin(ϕ (x)) Eqn (9)
G (x) complex Gabor noise Eqn (10)
xj center of kernel j Eqn (5)
F main frequency of the noise Eqn (5)
b bandwith of the noise and Gaussian Eqn (6)
u{j ,k ,m } direction of anisotropy Eqn (15)
a (x) ,aj (x) Gaussian of bandwith b Eqns (6,8,9)
θ angle between uk and um Sec 3.2.1
φ j phase of kernel j Eqn (8,9)
ϕ j (x) instantaneous phase of kernel j Eqn (14)

Table 1. Summary of the main notations.

akin to a form of normalized Gabor noise:

PhasorSinewave(x) = sin(PhasorNoise(x)) (3)

We call the result a phasor sine wave and denote it by P(x) for con-
ciseness. We further analyze its properties in the following Sections.

The second benefit is to afford for controlling the shape (profile)
of the noise oscillations themselves. A direct way to achieve this is
to replace the sine wave by another periodic function:

Pro f iledNoise(x) = f (PhasorNoise(x)) (4)

where f is a function of period 2π .
Alternatively, phasor noise can be used to generate harmonics

of a base phasor sine wave, allowing to produce different profiles
through an inverse Fourier transform (additive synthesis):

Noise (x) =
K∑
k=1

wk · sin
(
k · PhasorNoise(x) + ϕk

)
This is a weighted sum of K > 0 integer harmonics with synchro-
nized phases. The weightswk and phase shifts ϕk control the pro-
duced profile, allowing to synthesize any noise profile, e.g. rectan-
gular, sawtooth, or any other user controlled profile. While similar
to specifying a profile function, this offers novel possibilities such
as optimizing the weights — profile synthesis — or dynamically
adjusting them for filtering purposes (e.g. anti-aliasing).
To understand our approach and its properties we will study

noises of increasing complexities, starting by the simplest phasor
noise using a single main frequency and orientation, to richer noises.
For convenience we summarize the main notations introduced

throughout the paper in Table 1.

3.1 The bi-lobe case
The simplest form of phasor noise is obtained from a Gabor noise
using a single kernel. As a reminder, a Gabor noise is obtained by
convolving a Gabor kernel with a random impulse process. The
spectrum of the noise is then the spectrum of the kernel [Lagae et al.
2009].

In the frequency domain, a Gabor kernel is two symmetric Gaus-
sians, produced by the convolution of two delta functions and a
Gaussian. This is illustrated in Figure 2. The delta functions come
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from the sine wave in the spatial domain, and are precisely posi-
tioned in the spectrum by changing the frequency and orientation
of the wave. The Gaussian defines the bandwidth of the noise, e.g.
its frequency spread around the perfect sine wave. As in [Neyret
and Heitz 2016] we call this simplest form of noise the bi-lobe case.
The main observation making our work possible is that, in the

bi-lobe case, the noise is obtained by summing in the spatial domain
a large number of sine waves of same frequency weighted by Gaus-
sians. This can be rewritten as a single weighted sine wave, with an
explicit separation of intensity and phase. This operation is akin to
phasor addition in signal processing.
We start from a bi-lobe Gabor noise, defined in 2D (the same

derivations apply in 3D). It is parameterized by a main frequency F
2π ,

along direction u. In every position x, using the simplified expression
of Gabor noise with sine waves and no random weights [Tavernier
et al. 2019]3. It evaluates as:

G (x) =
n∑
j=0

a
(
x − xj

)
sin

(
F ·

(
x − xj

)
· u

)
(5)

where a is a centered Gaussian of bandwidth b:

a (x) = e−πb
2 | |x | |2 (6)

Through phasor addition, we rewrite the noise as:

G (x) = I (x) sin (F · x · u + φ (x)) (7)

where I is the intensity and φ the phase. This rewritten Gabor noise
is strictly equivalent to the initial one. In this case the phasor noise
is the instantaneous phase field ϕ (x) = F · x · u + φ (x), and we
denote the bi-lobe phasor sine wave as P (x) = sin(ϕ (x)).
Our claim is that, in the bi-lobe case, removing the intensity I –

keeping only the sine wave – creates a noise oscillating with perfect
local contrast, i.e. there are no low frequencies in the spectrum of
variance. Yet, the local shape of the sine wave is preserved, and
the overall frequency remains F . This means that harmonics of the
phasor sine wave are preserved as well, and thus the characteristics
of the profile function — that can be seen as a Fourier combination
of harmonics of the base phasor sine wave — are preserved.

3This is not mandatory for our reformulation to be well defined, we adopt this
point of view for the sake of simplicity.

bF
θ

Fig. 2. A bi-lobe Gabor noise and its Fourier transform. The orientation is θ ,
the frequency of the sine wave F and the bandwith b . They are all clearly
visible in the spectrum. Note that the image of the Fourier transform has
been cropped for readability.

While this might seem obvious when looking at Equation 7, the
difficulty comes from the fact that the new phase φ (x) does de-
pend on x. By varying it could reshape the sine wave arbitrarily,
significantly changing the frequency content of the result.

Before entering the details, let us give the full expression of I andφ
obtained from the sum of sine waves. This is a direct application of
the phasor addition formulas4. The intensity is obtained as:

I (x) =

√√√√√©«
∑
j
aj (x) sin (φ j )

ª®¬
2

+
©«
∑
j
aj (x) cos (φ j )

ª®¬
2

(8)

and the phase is obtained as:

φ (x) = atan2 ©«
∑
j
aj (x) sin (φ j ),

∑
j
aj (x) cos (φ j )

ª®¬ (9)

where aj (x) = a
(
x − xj

)
and φ j = −xj ·u · F , and where atan2(y, x)

returns the polar angle of the vector (x,y).
It is worth noting that atan2 is only defined if the vector norm is

non zero (I (x) , 0). We later discuss singularities occurring when I
vanishes (Section 3.1.4).

In the next sections we will verify that by omitting the intensity
we eliminate the local loss of contrast in the bi-lobe case of the noise.
At the same time, the overall frequency content is preserved: the
sine wave still oscillates at the same main frequency.

3.1.1 Phasor field. The rewrite of Gabor noise in terms of a single
sine wave exposes an underlying complex valued field. Indeed, I (x)
and φ (x) — Equations 8 and 9 — can be directly interpreted as the
modulus and argument of a sum of complex numbers:

n∑
j=1

aj (x)
(
cos (φ j ) + i sin (φ j )

)
=

n∑
j=1

aj (x) eiφ j

where eiφ j are random complex numbers of unit modulus. This is
the phasor field, illustrated in Figure 3.
To understand its effect, let us consider the complex version of

Gabor noise underlying the phasor addition:

G (x) = eiF ·x·u
n∑
j=1

aj (x) eiφ j (10)

The real valued Gabor noise is obtained as G (x) = Im(G (x)).
G is the product of two terms: a perfectly oscillating complex

wave (eiF ·x·u) and the phasor field. Thus, in a bi-lobe Gabor noise,
the phasor field is the source for both the local loss of contrast —
via its varying modulus I (x) — and the phase shifts φ (x) — via its
argument. A key question is whether the phase shifts φ (x) could be
strong enough to introduce frequencies lower than F .
Interestingly, the phasor field is a sparse convolution obtained

by summing spatially located Gaussians (aj ) multiplied by random,
unit complex numbers. Therefore, the produced random field has
the bandwidth b of the Gaussians, and the speed at which φ changes
is driven by b. When b is much smaller that F , the variations in
phase due to φ are much slower than that of the base frequency F .

4see e.g. https://ccrma.stanford.edu/~jos/filters/Proof_Using_Trigonometry.html
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Fig. 3. From left to right: a phasor sine wave, its underlying phasor field
(directions as hue, modulus as luminance) and associated phase field φ .

This implies that φ has little impact on the local profile of the sine
function, while its impact on the overall frequency is limited by b.

This hints at a first result: the spectrum of the phasor sine wave
is similar to that of the Gabor noise — since φ has little impact on
F — while its spectrum of variance exhibit no low frequency (no
local loss of contrast in the signal) — since φ cannot reshape the sine
wave profile significantly. Note that this is only true for b smaller
than F .

The phasor field also reveals that the phase will exhibit singulari-
ties. Indeed, in some singular locations the modulus of the phasor
field vanishes: this is where the sum of complex numbers becomes
null. Around these singularities φ rotates abruptly. We discuss this
effect in Section 3.1.4.

3.1.2 Spectrum of the phasor sine wave. In this section and the
following we only outline the main results of our analysis of phasor
noise. Please refer to the supplemental material for full details and
derivations. We perform the analysis on periodic instances of the
phasor sinewave. This is achieved by sampling kernels in a periodic
domain. In this case, the Fourier transform of P is :

Fx [P (x)] (ω) = ω0

+∞∑
k=−∞

Fx [B (x) P (x)](kω0) δkω0 (ω) (11)

with B a windowing function verifying the partition of unity prop-
erty and where ω0 =

1
T0 with T0 the analysis period. The am-

plitude of the deltas δ in Fx [P (x)] is driven by the spectrum of
Fx [B (x) P (x)] which is:

Fx [B (x) P (x)](ω) =
1
2
Fx [B (x) (sin (φ (x)) − i cos (φ (x)))]

(
ω −

F

2π
u
)

+
1
2
Fx [B (x) (sin (φ (x)) + i cos (φ (x)))]

(
ω +

F

2π
u
)

The two terms are functions convoluted with two symmetric
deltas located at the main frequency of the noise (ω ± F

2π ). These
two functions are smooth and their Fourier transforms are rapidly
decaying (holds for one dimension, verified experimentally in 2D
and 3D due to singularities – please refer to the supplemental ma-
terial for details). This explains the presence of two lobes in the
spectrum.

3.1.3 Spectrum of variance the phasor sine wave. We use the same
approach to derive the spectrum of variance, noting that if P is
periodic, then P2 is also periodic. The spectrum of variance is the
spectrum of the squared signal, Fx [B (x) P2 (x)]. In this case, the
amplitude of the deltas in the Fourier transform are obtained as

2F
θ

2F

2F
θ

2F

δ

Fig. 4. Noise (left) and spectrum of variance (right). First row: Gabor noise.
Second row: Phasor sine wave. The colors are the same as the ones used
for equation 12. Note the absence of low frequency – no center lobe – in
the spectrum of variance of the phasor sine wave.

(coloring the main terms to help the description):

Fx [B (x) P2 (x)] (ω) =
1
2
δ0(ω)

+
1
4
Fx [B (x) (1 − 2 cos2 (φ (x)))]

(
ω −

2F
2π

u
)

−
i

2
Fx [B (x) sin (φ (x)) cos (φ (x))]

(
ω −

2F
2π

u
)

+
1
4
Fx [B (x) (1 − 2 cos2 (φ (x)))]

(
ω +

2F
2π

u
)

+
i

2
Fx [B (x) sin (φ (x)) cos (φ (x))]

(
ω +

2F
2π

u
)

(12)
where the terms in orange and green are again two functions that
are convolved with symmetric deltas located at twice the main fre-
quency of the noise (± 2F

2π u). These terms correspond to the lobes
shown in Figure 4. The central dirac δ0 corresponds to the average
value of the variance, which is non zero. The most important obser-
vation is the absence of any central lobe, which indicates that the
phasor sine wave suffers no local loss of contrast.
The non-centered lobes could however contribute low frequen-

cies in the spectrum of variance, depending on the ratio between
F and b (the bandwidth of the Gaussians aj ). In this case removing
the intensity terms from the Gabor noise does not remove all low
frequencies from the spectrum of variance. Going back to the inter-
pretation of the bi-lobe noise in terms of underlying random phasor
field (Section 3.1), this is an instance where the phasor field varies
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Fig. 5. Noise and spectrum of variance. (Left: Gabor noise, Right: phasor
sine wave). In this case the ratio between the bandwith of the gaussian and
the frequency is large enough for φ to significantly reshape the main sine
wave.

more rapidly than the base sine wave frequency, thereby changing
its profile. Such a case is illustrated in Figure 5.

3.1.4 When the phasor modulus goes to zero. The intensity I (x)
of the Gabor noise goes to zero in a few singular locations. Note
that we do not suffer from numerical issues since we define the
phasor sine wave P by omitting to multiply by I . The only potential
source of trouble (atan2) is well identified. In the implementation
null phasors never truly occur thanks to the small rounding errors.
In such locations, we can observe singularities in the phase φ:

abrupt rotations around a singular point or abrupt variations across
ridges (see Figure 6). By going to zero I hides these occurrences in
the original Gabor noise. When removing I we bring these singu-
larities into the signal. This creates sharp points and edges, which
correspond to locations in the Gabor noise where the sine wave
oscillations are in phase opposition.
There are two main types of issues (see Figure 6). First, those

which occur at a point where one sine wave band disappears. Second,
those which occur along abrupt variations in the field, where the
wave fronts on both sides oppose. These correspond to curved ridges
that are connecting two point singularities.
The singularities only add high frequencies in the direction or-

thogonal to the waves. As they are relatively few and localized, their
influence on the overall signal is limited. The number of singulari-
ties is impacted by the choice of Gabor bandwidth b – the smaller
the bandwidth the closer to an ideal sine wave.
It is worth noting that Neyret and Heitz [2016] proposed an

iterated scheme to filter away these issues – paving the way for
potential solutions. However, the several iterations of direct and

rotation and discontinuity

large gradient

Fig. 6. Left: Intensity field. Middle: Color coded phase field (angled
mapped on hue). Right: Phasor sine wave. Two types of artifacts appear in
the phase field. The first are point singularities (in orange) around which
the phase rotates rapidly. It corresponds to the disappearance of a wave
front. When two such singularities are close to one another in the direction
orthogonal to the noise (in cyan), a ridge appears in the phase with opposing
wave fronts across.

inverse Fourier transforms cannot be done in a procedural manner.
Also, such a filtering approach does not give access to an explicit
separation between a base sine wave and its argument, precluding
the ability to control the oscillation’s profiles.
While we currently do not address these singularities, this is a

clear venue of future work.We believe the phasor field interpretation
to open interesting possibilities by directly exposing the source of
these defects.

3.2 General case
We now present our approach to produce general phasor noise
patterns with richer frequency content.
As with Gabor noise, kernels of different orientations and fre-

quencies are combined together. We then extract the instantaneous
phase modulation ϕ(x) and evaluate a single sine wave at the end.
Thus, in the most general case we define the noise as:

G (x) = I (x) sin (ϕ (x)) (13)

It contains Gabor kernels at arbitrary frequencies Fj and direction
uj (unit vectors), that is:

G(x) = I (x) sin (ϕ(x)) =
n∑
j=1

aj (x) sin (ϕ j (x)) (14)

where

aj (x) = a
(
| |x − xj | |

)
and ϕ j (x) = Fj · (x − xj ) · uj (15)

and the phasors are aj (x) ·
(
cos (ϕ j (x)) , sin (ϕ j (x))

)
.

Through phasor addition, we obtain I and ϕ as:

I (x) =

√√√( n∑
j=1

aj (x) cos (ϕ j (x))
)2
+
( n∑
j=1

aj (x) sin (ϕ j (x))
)2

ϕ (x) = atan2 ©«
n∑
j=1

aj (x) sin (ϕ j (x)),
n∑
j=1

aj (x) cos (ϕ j (x))
ª®¬

Equivalently, I and ϕ are the modulus and argument of a complex
version of the noise G, defined similarly as in Section 3.1.1.

Note that Equation 13 remains strictly equivalent to the original
Gabor noise, but rewritten as a single sine wave. In the following
we will study the properties of the phasor sine wave P = sin(ϕ(x))
obtained by omitting I .
To understand the behavior in the general case, we start by dis-

cussing the case of two bi-lobes in Section 3.2.1. We then proceed
to the general case combining kernels of different frequencies and
orientations in Section 3.2.2. It can be understood as a generalization
of the two bi-lobe case.

3.2.1 Two bi-lobes. Let us consider a Gabor noise combining two
bi-lobe noises of same frequency F but with different orientations
uk and um . Applying the phasor addition we obtain:

G (x) = Guk (x) +Gum (x)

= Iuk (x) sin (ϕuk (x)) + Ium (x) sin (ϕum (x))

= I (x) sin(ϕ (x))
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with:

I (x) =
√
(Iuk cosϕuk + Ium cosϕum )2 + (Iuk sinϕuk + Ium sinϕum )2

ϕ (x) = atan2( Iuk sinϕuk + Ium sinϕum , Iuk cosϕuk + Ium cosϕum )

This is the sum of two phasors, one for each initial Gabor noise
Guk and Gum . These phasors vary in space and have different be-
haviors along different directions.
In the following we discuss the spectrum of variance and spec-

trum of the two bi-lobe phasor sine wave. Detailed derivations,
obtained from the complex version of the noises, are provided in
the accompanying supplemental material.
Please note that the angle θ between the two bi-lobes, that is

between directions uk and um , plays a role in the analysis.

Spectrum of variance: two bi-lobe Gabor noises. In total, the spec-
trum of variance for Gabor noise in the two bi-lobes case exhibits
Gaussians in nine locations, shown in Figure 8, left. Five of these
Gaussians correspond to the squared bi-lobe noises: centered Gaus-
sians and Gaussians at ±2uk and ±2um coming from respectively
G2
uk and G2

um (recall that the spectrum of variance is the spectrum
of the squared noise). The four other Gaussians emerge from inter-
actions between the two bi-lobes. They appear when squaring the
Gabor noise:G2 (x) = G2

uk (x)+G
2
um (x)+ 2GukGum . The last prod-

uct term leads to the remaining four Gaussians located at±(uk−um )

and ±(uk + um ): the product in the spatial domain is a convolution
in the spectral domain, resulting in the diagonal lobes.

Spectrum of variance: two bi-lobe phasor sine waves. We now con-
sider the spectrum of variance of the phasor sine wave resulting
from omitting I , see Figure 7 middle. We observe the absence of
centered Gaussians — implying there is no loss of local contrast
— and the presence of lobes at ±2uk and ±2um . The Gaussians at
±(uk −um ) have disappeared ; however, those at ±(uk +um ) remain.
This is only partially satisfying as the Gaussians at ±(uk + um )

may fold back onto low frequencies depending on the angle θ be-
tween uk , um . It is possible to obtain the symmetric effect, ensuring
that Gaussians at ±(uk + um ) are removed in place of those that
±(uk − um ), see Figure 7, right. This is achieved by inverting the
direction of one of the base noises. This may be used to select the
approach depending on the angle θ between uk , um , avoiding low
frequencies to be introduced by the diagonal bi-lobes (e.g. in Figure 7

Fig. 7. Spectrum of variance of two bilobes. Left: Gabor noise exhibiting
local loss of contrast, resulting in a central lobe in the spectrum of variance.
Middle: Phasor sine wave with the two bi-lobes separated by π

4 . The local
loss of contrast is completely eliminated: no central lobe. Note the two-
sided spectrum of variance. Right: Same phasor sine wave using the dual
formulation to eliminate the other lobes instead.

Fig. 8. Two bi-lobes noise. Left: Gabor noise and its spectrum of variance.
The nine Gaussian locations are clearly visible; in yellow the center Gaus-
sians, in blue and green the bi-lobes Gaussians at ±2uk and ±2um and
outlined by orange and purple arrows the interaction Gaussians at (respec-
tively) ±(uk + um ) and ±(uk − um ). Right: Normalized noise where the
center lobe is removed. This is not a phasor sine wave as an intensity term
remains, please refer to the text.

selecting the middle case instead of the right one where the lobes get
closer to the center). The switch should occur when uk ·um changes
sign, that is when the angle θ between both directions exceeds π

2 .
As a side note, we can also choose to cancel only the centered

Gaussians in the Gabor spectrum of variance. To achieve this, we
keep the noise intensity I but divide it by

√
I2uk + I

2
um . The full noise

expression becomes I (x)√
I 2uk (x)+I

2
um (x)

sinϕ (x). An example is shown

in Figure 8, right. The rationale is that the central lobe originates
from that of both individual Gabor noises. Hence, by rescaling the
noise with I (x)√

I 2uk (x)+I
2
um (x)

we cancel the center lobes but preserve

the others. However, this renormalization is different from our initial
intent with phasor noise: it only applies to a sine wave profile.

Phase singularities. As with the bi-lobe case, phase singularities
appear where intensity vanishes. However, another type of phase
defect appears, which depends on the angle θ between the two
bi-lobe directions.
To understand this effect let us consider — without loss of gen-

erality — a single direction. For simplicity we select uk . Along this
direction the phasors take different frequencies, respectively F and
F ·um ·uk (this stems from the dot product with uj s in Equation 15).
Now, depending on the angle θ between um and uk , the two phasors
will interfere with one another in different manners. The different
cases we are about to discuss are illustrated in Figure 9.
If um = uk the pattern is exactly similar to the bi-lobe case. For

small angles θ , we obtain a smooth pattern with gentle orientation
changes. For larger angles however, interferences start to introduce
sharp turns in the phase. This is most visible when the angle θ
between the two bi-lobes is π

2 . Visually this results in an abrupt
interruption of the waves (’chopping’), shown in Figure 9, rightmost.
High frequencies appear in the spectrum reflecting the perceivable
edges. This defect is easily explained by considering the phasor
diagram of two sine waves in the π

2 case, as detailed in Figure 10.
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Fig. 9. Phasor sine wave in the two bi-lobes case, with separation angles θ
of respectively (left to right) π

10 ,
π
6 ,

π
4 ,

π
2 . The insets at the bottom right

show the power spectrum of the patterns. As the angle θ increases, high
frequencies due to interferences between the two bi-lobes appear.

Fig. 10. Phasor diagram illustrating the interactions between two orthogonal
2D sine waves sin(x · uk) (green) and sin(x · um) (blue), along direction uk.
The diagram on the left shows the two sine wave phasors as blue and
green vectors: the green phasor rotates while the blue phasor remains
fixed: the blue sine wave does not oscillate along uk. The right plot shows
the resulting waves along uk. The purple is the result obtained by phasor
addition, omitting intensity. Since both sine waves have the same intensity,
the sum of the green and blue phasors vanish in specific locations, and the
purple phasor abruptly changes from π

2 to − π
2 , interrupting the purple sine

wave. Waves of different intensities do not exhibit this issue.

Fig. 11. Top row: Gabor noises mixing an increasing number of bi-lobes (3,
4, 6, 32) with orientations regularly distributed over π . Bottom row: Corre-
sponding phasor sine wave. Both the spectrum and spectrum of variance
(outlined in blue) are shown. The achieved power spectrum are similar. The
phasor noise has some additional energy in higher frequencies due to singu-
larities. The phasor sine wave eliminates a large part of the low frequency
disc in the spectrum of variance. The parts that remain are due to the two-
sided normalization observed with the two bi-lobes case, here generalized
for large number of bi-lobes. We discuss this further in Section 3.2.2.

Whether the visual artifact is problematic depends on the target
application. However, these defects appear progressively. This hints
at a possibility to reduce their impact by locally avoiding mixing
patterns with large differences, which we discuss in Section 3.2.2.

3.2.2 Mixed kernels. The most general case involves summing ker-
nels of randomly sampled orientations and/or frequencies [Lagae

Fig. 12. Left: Phasor sine wave with randomly sampled orientations in
[− π

2 ,
π
2 ]. The spectrum of variance has a two-sided aspect.Middle: Phasor

noise with locally coherent random direction field. The spectrum of variance
(bottom right) is now close to an ideal ring, with little residual energy in the
low frequencies. The top right image shows the direction field with angle
mapped on hue.

Fig. 13. Additive synthesis of a sawtooth profile. Top left: Base phasor
sine wave. Top row: integer harmonics (without their weight for clarity).
Middle row : Progressive summation of the weighted harmonics. Bottom:
Obtained pattern with sawtooth profile ; a few more harmonics would be
required to properly converge.

et al. 2009]. This affords for the synthesis of richer patterns. Isotropic
patterns are of particular interest, as well as progressive spatial gra-
dation between different orientations and frequencies.
Figure 11 illustrates the patterns obtained when mixing an in-

creasing number of bi-lobes. Each additional bi-lobe introduces new
pairwise interactions, which are as many additional Gaussians in
the spectrum of variance (the number of Gaussians doubles for each
new bi-lobe).
We observe a generalization of the behavior of two bi-lobes: A

large portion of the low frequency disk in the spectrum of variance
of the phasor sine wave is removed, albeit in a two-sided manner.
The remaining low frequencies are due to pairs of bi-lobes separated
by an angle θ above π

2 . However, if the angle between all bi-lobe
pairs remains below π

2 , all low frequencies are suppressed. We
exploit this to formulate an isotropic phasor noise that strongly
reduces the mixing of incompatible bi-lobes.
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Locally coherent isotropic noise. In the standard approach, the
isotropic noise is produced by randomly sampling orientations in
every kernel, i.e. uk = random_unit_vector (xk ). To better control
which kernels mix together in the noise we modify the sampling of
directions. Instead of using random independent sampling, we rely
on a Gaussian sparse convolution noise with controlled bandwidth:

uj =

∑n
j=1 д

(
x − xj

)
rj (ωf )

| |
∑n
j=1 д

(
x − xj

)
rj (ωf )| |

where д(x) = e
−π ·b2

f · | |x | |
2
and rj (ωf ) are random unit vectors sam-

pled in the range of angles [−ωf ,ωf ]. The impulses xj are indepen-
dent from those of the phasor noise. By changing bf we control how
locally coherent the direction field is. By increasingωf we smoothly
go from the bi-lobe case to arcs, and ultimately to a full ring. To
obtain an isotropic noise we set ωf = 2.4 and bf = b

2 with b the
bandwidth of the phasor noise. This does not remove all areas of
abrupt changes, but strongly reduces the spurious interferences. As
shown in Figure 12 the ring in the spectrum of variance is now close
to perfect. Of course, while the spectral content is now satisfac-
tory, this significantly changes the aspect of the field. Nevertheless,
this provides an additional control to trade-off between the more
standard isotropic aspect and an aspect which, while being locally
similar to the bi-lobe case, is globally isotropic.

Finally, let us note that this incurs a performance penalty, as the
direction field has to be sampled at every kernel.

3.3 Oscillation’s profiles
Phasor noise provides an instantaneous phase modulation that af-
fords for the synthesis of noises with arbitrarily shaped oscillation
profiles.
This can be achieved in two ways. The most direct is to feed

the phasor noise into a periodic function having a 2π period. This
generates a field where the main oscillations follow that of a phasor
sine wave, but where the oscillations are shaped by the new periodic
function. In addition, the periodic function itself may vary spatially,
offering a unique control over the patterns, as shown in Figure 1.

The second way is to perform weighted sums of integer harmon-
ics of a base phasor sine wave, as illustrated in Figure 13. This is a
form of inverse Fourier transform, using the phasor sine wave as the
fundamental harmonic. The linear summation has the advantage of
being analytic and offering a direct control over introduced frequen-
cies. It also paves the way for optimizing the profiles or dynamically
adjusting them during rendering (e.g. anti-aliasing).
Figure 23 shows various profile shapes and how they modify

the spectrum and spectrum of variance. We further explore profile
reshaping in Section 4.

4 RESULTS
Our technique is especially well suited to produce highly contrasted
patterns and strongly oriented, laminate-like stochastic structures.
Direct control over the profile enables further spatial gradations.
We start by showing the high degree of control made possible

by phasor noise in Section 4.1. We continue with applications in

modeling surface displacements and textures in Section 4.2. We fi-
nally illustrate potential applications for synthesizingmulti-material
laminates, in the context of additive manufacturing, in Section 4.3.
Throughout the section, please keep in mind that the shown

effects are all purely procedural [Lagae et al. 2010], and computed
in a few milliseconds from a pixel shader.

4.1 Controls
Figure 15 illustrates the variety of controls enabled by phasor noise.
In this particular case the profile being used is a rectangular signal
which ’up’ time in each period can be modified – visually modifying
the white/black ratio and producing thicker or thinner lines. We
refer to this profile as a Pulse Width Modulation (PWM) profile.
As can be seen in Figure 15 all parameters can be freely spa-

tially graded, including the profile parameters themselves. Figure 14
shows a similar control using a grayscale image as a source.

Fig. 14. Pattern produced from phasor noise, controlling a PWM profile
width from the image gray level and the orientations from the gradients.

Reshaping the profiles is a powerful tool, especially when target-
ing a precise histogram and homogeneous appearance. For instance,
Figure 16 compares the synthesis of a noise with a fixed, chosen
width (25% high). With phasor noise we immediately get the cor-
responding profiled pattern, which exhibits the chosen average
histogram. On the contrary, thresholding a Gabor noise involves
manually tuning the threshold, and the achieved result is not spa-
tially homogeneous.
Figure 1 illustrates how different oscillation profiles may be

blended together while controlling other parameters. The profile
functions are linearly interpolated based on the abscissa: the two
profiles enclosing the lookup point are accessed and the result is
linearly interpolated.

4.2 Surface displacements and texturing
Another promising application of phasor noise is its use for model-
ing surface displacements. The profile, frequency and orientation
controls allow to produce different displacements along the parts,
changing significantly the appearance of surfaces, and possibly their
friction and tactile properties.
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Fig. 15. Columns, from left to right: Control fields, frequency control, PWM ‘width’ control, orientation control, all together.

Fig. 16. Left: phasor noise through a PWM profile having 25% white (global
average verified at 25.007 %). Right: Gabor noise thresholded to obtain an
average of 25% (final at 0.25902%) the threshold was manually found as it
depends on the noise parameters.

Fig. 17. Left: A lava sphere which surface is synthesized by an isotropic
phasor noise with sawtooth profile. Right: Fingerprints modeled with a
phasor sine wave following a user specified direction field.

Fig. 18. Bracelet modeled with a phasor noise displacement. By varying
the profile according to the local section of the torus, a tearing effect is
achieved.

Figure 17 shows a lava sphere which surface is modeled by an
isotropic phasor noise with sawtooth profile, as well as fingerprints
generated by a phasor sine wave from a user specified direction field.
Changing the random seed generates new sets of unique fingerprints.
Figure 18 shows a complex 3D bracelet which outer crust is modeled
with a phasor noise displacement.

Phasor noise also provides novel possibilities in terms of proce-
dural texturing. For instance, Figure 19 shows cracked tree bark tex-
tures that answer different requirements along cone cross-sections:
the bark stripes are controlled independently in their width and
number. Such precise controls would not be possible through simple
lookup tables applied to existing noise patterns. These effects being
produced from a pixel shader they could also easily evolve with a
dynamic geometry. This provides a fully procedural alternative to

ACM Trans. Graph., Vol. 38, No. 4, Article 57. Publication date: July 2019.



Procedural Phasor Noise • 57:11

Fig. 19. Cones covered with a cracked tree bark pattern, using a PWM
profile. Each cone achieves a different effect through different controls. Left:
constant width and constant frequency, resulting in less stripes at the top.
Middle: varying width and constant frequency, preserves the amount of
white along cross-sections. Right: constant width and varying frequency.

Fig. 20. Top: Left torus is covered by ridges produced with a locally coherent
isoptropic phasor noise and a triangular profile; right torus is covered by
a grip pattern, obtained as the product of two correlated (same kernels
distribution), orthogonal phasor sine waves.Middle: Cracked patterns. The
left texture is obtained by crossing two phasor noises using PWMpatterns of
varying width. The right texture is obtained from a single triangular profile,
clamped at a varying height. Bottom: Bark patterns. These barks combine
several phasor noises with triangular and sawtooth profiles to achieve the
final appearance, with varying degrees of isotropy.

optimization-based parameterization methods for generating stripe
patterns [Knöppel et al. 2015].
Figure 21 illustrates how the oscillation’s profile can directly

mimic some naturally occurring phenomena such as the asymmetric
sand ripples along desert dunes.
Finally, Figure 20 shows a variety of textures such as cracked

paints and tree barks applied to tori. These texture combine several
layers of phasor noises using rectangular and sawtooth profiles.

4.3 Multi-material laminates
Multi-material laminates are typically made of two sandwiched ma-
terials, one more rigid than the other. Such laminates are of high
interest for additive manufacturing, as they produce orthotropic
elastic behaviors [Martínez et al. 2017]: the part is more flexible
orthogonally to the laminate than in the other two directions. Ide-
ally, for maximal design flexibility, the laminates should be freely
orientable in space, and the proportions between both materials
should be precisely controlled.
Phasor noise provides such flexibility through PWM profiles.

Materials A and B are directly mapped to the up/down parts of
the profile. This affords for a direct control of the orientation and
material proportions. Figure 22 illustrates a cross shaped plate where
we can observe that the laminate pattern triggers different bending
behaviors in the extremities. The Figure also shows a miniature
3D shoe insole with a spatially varying 3D laminate pattern. Both
models are driven by control fields allowing to paint orientation,
mixture ratios and degree of isotropy.
Note that this could easily accommodate for more than two ma-

terials by creating a profile with multiple steps.

5 LIMITATIONS
In the bi-lobe case the noise is overall well behaved. Point singular-
ities are acceptable, however we would like to reduce the impact
of ridges between them. These produce waves in opposition and
’chopping’ of the sine waves. Now that we have exposed the phasor
field underlying the noise, it would be interesting to consider how
to filter singularities. However, doing this in a procedural manner
seems difficult.
Some undesirable interactions exist when mixing kernels using

very different directions, with sine waves being abruptly cut off.
Controlling the underlying direction field to obtain a locally coher-
ent noise helps greatly and in practice, most interesting profiles
have themselves high frequencies and mask these issues. However,
ultimately we would like to reduce or remove these defects.

6 CONCLUDING REMARKS
There are links between phasor noise and the work of Neyret and
Heitz [2016]. In particular, they introduce the notion of a normalized
Gabor noise, which is filtered to suffer no local loss of contrast.
This actually defines a full family of noises, as the normalization
embeds a notion of window size (the smallest window resulting
in a zero-thresholded noise — a noise normalized at all scales and
hence with a square profile). Our phasor noise is normalized but has
no notion of normalization scale. The normalization is an intrinsic
property of its definition.
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Having a window size to chose from offers additional controls
to the user, which is often desirable for texturing applications. One
benefit of our approach, however, is that no a-posteriori filtering
is required, while the filtering approaches in [Neyret and Heitz
2016] involve either a local averaging through super-sampling, or
an iterative Fast Fourier Transform algorithm. Finally, the ability to
reshape the noise oscillation’s profiles is quite unique to our method.

In a sense, the phasor sine wave is a generalized sine wave, which
scale and orientations can be freely controlled in space. This leads to
the possibility of performing additive synthesis to generate various
profiles. We believe this is a novel tool in procedural synthesis that
will lead to further developments. In particular, procedural noise is
typically used to add fine scale unstructured details [Guingo et al.
2017]. Phasor noise paves the way to the ability to synthesize in-
creasingly structured patterns from purely procedural synthesizers.

A remarkable property of phasor noise is that it is purely ana-
lytical. Even in the case of using a PWM there is no thresholding:
the result is obtained as a weighted sum of harmonics. This opens
interesting venues of future work, such as optimizing the pattern
profile directly under specific objectives (elasticity, appearance).
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Fig. 21. A desert scene. The sand surface pattern is a phasor noise fed into a sawtooth profile. A second higher frequency phasor noise adds details to the
surface. The color is also modulated by the profile.

Fig. 22. Left: Cross shaped plate patterned with a phasor noise through a PWM profile. Printed using two materials (one flexible, one rigid). The user controlled
fields are shown to the side: a ratios of material, b orientation and c isotropy. The patterns vary across the plate. Right: Shoe insole using a multimaterial
pattern procedural synthesized with phasor noise. Both objects are printed on an Ultimaker 3.
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Fig. 23. Profile synthesis using phasor noise, and effect on the spectrum and spectrum of variance. Top row: Noise patterns.Middle row: Noise spectrum.
Bottom row: Noise spectrum of variance. From Left to Rigth: Gabor noise followed by phasor noises with sine, square, triangular and sawtooth profiles.
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