This repository has been archived on 2020-03-10. You can view files and clone it, but cannot push or open issues or pull requests.
mgm-tp1/mainwindow.cpp

551 lines
20 KiB
C++

#include "mainwindow.h"
#include "ui_mainwindow.h"
#include <vector>
#include <set>
#include <iostream>
using namespace std;
/* **** début de la partie à compléter **** */
void MainWindow::showSelections(MyMesh* _mesh)
{
// on réinitialise les couleurs de tout le maillage
resetAllColorsAndThickness(_mesh);
/* **** à compléter ! **** cette fonction utilise les variables de
* sélection vertexSelection, edgeSelection et faceSelection qui
* sont les ID des élements sélectionnés et qui sont égales à -1
* si la sélection est vide
*/
if (vertexSelection >= 0 && vertexSelection < _mesh->n_vertices() - 1) {
VertexHandle vh = _mesh->vertex_handle(vertexSelection);
_mesh->set_color(vh, MyMesh::Color(255, 0, 0));
_mesh->data(vh).thickness = 5;
}
if (edgeSelection >= 0 && edgeSelection < _mesh->n_edges() - 1) {
EdgeHandle eh = _mesh->edge_handle(edgeSelection);
_mesh->data(eh).thickness = 5;
_mesh->set_color(eh, MyMesh::Color(255, 0, 0));
}
if (faceSelection >= 0 && faceSelection < _mesh->n_faces() - 1) {
_mesh->set_color(_mesh->face_handle(faceSelection),
MyMesh::Color(255, 0, 0));
}
// on affiche le nouveau maillage
displayMesh(_mesh);
}
void MainWindow::showSelectionsNeighborhood(MyMesh* _mesh)
{
// on réinitialise les couleurs de tout le maillage
resetAllColorsAndThickness(_mesh);
/* **** à compléter ! **** cette fonction utilise les variables de
* sélection vertexSelection, edgeSelection et faceSelection qui
* sont les ID des élements sélectionnés et qui sont égales à -1
* si la sélection est vide et affiche en plus le voisinage de
* chaque sélection :
* - les faces voisines les faces
* - les faces adjacentes pour les arêtes
* - les arêtes incidentes pour les sommets
*/
if (vertexSelection >= 0 && vertexSelection < _mesh->n_vertices() - 1) {
VertexHandle vh = _mesh->vertex_handle(vertexSelection);
for (auto ve_it = _mesh->ve_iter(vh); ve_it.is_valid(); ++ve_it) {
_mesh->set_color(*ve_it, MyMesh::Color(255, 0, 0));
_mesh->data(*ve_it).thickness = 5;
}
}
if (edgeSelection >= 0 && edgeSelection < _mesh->n_edges() - 1) {
EdgeHandle eh = _mesh->edge_handle(edgeSelection);
HalfedgeHandle heh0 = _mesh->halfedge_handle(eh, 0);
HalfedgeHandle heh1 = _mesh->halfedge_handle(eh, 1);
FaceHandle fh0 = _mesh->face_handle(heh0);
FaceHandle fh1 = _mesh->face_handle(heh1);
_mesh->set_color(fh0, MyMesh::Color(255, 0, 0));
_mesh->set_color(fh1, MyMesh::Color(255, 0, 0));
}
if (faceSelection >= 0 && faceSelection < _mesh->n_faces() - 1) {
FaceHandle fh = _mesh->face_handle(faceSelection);
for (auto ff_it = _mesh->ff_iter(fh); ff_it.is_valid(); ++ff_it) {
_mesh->set_color(*ff_it, MyMesh::Color(255, 0, 0));
}
}
// on affiche le nouveau maillage
displayMesh(_mesh);
}
void MainWindow::showBorder(MyMesh* _mesh)
{
// on réinitialise l'affichage
resetAllColorsAndThickness(_mesh);
/* **** à compléter ! **** */
for (auto heh_it = _mesh->halfedges_begin(); heh_it != _mesh->halfedges_end(); ++heh_it) {
if (_mesh->is_boundary(*heh_it)) {
EdgeHandle eh = _mesh->edge_handle(*heh_it);
_mesh->set_color(eh, MyMesh::Color(255, 100, 150));
_mesh->data(eh).thickness = 5;
}
}
// on affiche le nouveau maillage
displayMesh(_mesh);
}
void MainWindow::showPath(MyMesh* _mesh, int v1, int v2)
{
// on réinitialise l'affichage
resetAllColorsAndThickness(_mesh);
if ((v1 >= 0 && v1 < _mesh->n_vertices() - 1) && (v2 >= 0 && v2 < _mesh->n_vertices() - 1)) {
// point de départ et point d'arrivée en vert et en gros
_mesh->set_color(_mesh->vertex_handle(v1), MyMesh::Color(0, 255, 0));
_mesh->set_color(_mesh->vertex_handle(v2), MyMesh::Color(0, 255, 0));
_mesh->data(_mesh->vertex_handle(v1)).thickness = 12;
_mesh->data(_mesh->vertex_handle(v2)).thickness = 12;
/* **** à compléter ! **** */
for (const int &edge_id : meinDijkstra(_mesh, v1, v2)) {
_mesh->set_color(_mesh->edge_handle(edge_id), MyMesh::Color(0, 255, 0));
_mesh->data(_mesh->edge_handle(edge_id)).thickness = 12;
}
}
// on affiche le nouveau maillage
displayMesh(_mesh);
}
int minimal_new(vector<ulong> dist, set<int> visited) {
long mini = LONG_MAX;
int mini_id = -1;
for (int i = 0; i < dist.size(); i++) {
if (visited.count(i) == 0 && dist[i] < mini) {
mini = dist[i];
mini_id = i;
}
}
return mini_id;
}
vector<int> meinDijkstra(MyMesh *_mesh, int v1, int v2) {
set<int> visited_nodes_id = {};
const int nb = _mesh->n_faces();
vector<ulong> dist_min (nb, ULONG_MAX);
vector<HalfedgeHandle> prec_hf (nb);
dist_min[v1] = 0;
int current;
VertexHandle current_node;
uint distance;
int following;
while (visited_nodes_id.size() != nb) {
current = minimal_new(dist_min, visited_nodes_id);
visited_nodes_id.insert(current);
if (current == v2) break;
current_node = _mesh->vertex_handle(current);
for (auto voh_it = _mesh->voh_iter(current_node); voh_it.is_valid(); ++voh_it) {
distance = dist_min[current] + 1;
following = _mesh->to_vertex_handle(*voh_it).idx();
if (distance < dist_min[following]) {
dist_min[following] = distance;
prec_hf[following] = _mesh->opposite_halfedge_handle(*voh_it);
}
}
}
vector<int> path;
current = v2;
while (current != v1) {
path.push_back(_mesh->edge_handle(prec_hf[current]).idx());
current = _mesh->to_vertex_handle(prec_hf[current]).idx();
}
return path;
}
/* **** fin de la partie à compléter **** */
/* **** début de la partie boutons et IHM **** */
void MainWindow::on_pushButton_bordure_clicked()
{
showBorder(&mesh);
}
void MainWindow::on_pushButton_voisinage_clicked()
{
// changement de mode entre avec et sans voisinage
if(modevoisinage)
{
ui->pushButton_voisinage->setText("Repasser en mode normal");
modevoisinage = false;
}
else
{
ui->pushButton_voisinage->setText("Passer en mode voisinage");
modevoisinage = true;
}
// on montre la nouvelle selection
if(!modevoisinage)
showSelections(&mesh);
else
showSelectionsNeighborhood(&mesh);
}
void MainWindow::on_pushButton_vertexMoins_clicked()
{
// mise à jour de l'interface
vertexSelection = vertexSelection - 1;
ui->labelVertex->setText(QString::number(vertexSelection));
// on montre la nouvelle selection
if(!modevoisinage)
showSelections(&mesh);
else
showSelectionsNeighborhood(&mesh);
}
void MainWindow::on_pushButton_vertexPlus_clicked()
{
// mise à jour de l'interface
vertexSelection = vertexSelection + 1;
ui->labelVertex->setText(QString::number(vertexSelection));
// on montre la nouvelle selection
if(!modevoisinage)
showSelections(&mesh);
else
showSelectionsNeighborhood(&mesh);
}
void MainWindow::on_pushButton_edgeMoins_clicked()
{
// mise à jour de l'interface
edgeSelection = edgeSelection - 1;
ui->labelEdge->setText(QString::number(edgeSelection));
// on montre la nouvelle selection
if(!modevoisinage)
showSelections(&mesh);
else
showSelectionsNeighborhood(&mesh);
}
void MainWindow::on_pushButton_edgePlus_clicked()
{
// mise à jour de l'interface
edgeSelection = edgeSelection + 1;
ui->labelEdge->setText(QString::number(edgeSelection));
// on montre la nouvelle selection
if(!modevoisinage)
showSelections(&mesh);
else
showSelectionsNeighborhood(&mesh);
}
void MainWindow::on_pushButton_faceMoins_clicked()
{
// mise à jour de l'interface
faceSelection = faceSelection - 1;
ui->labelFace->setText(QString::number(faceSelection));
// on montre la nouvelle selection
if(!modevoisinage)
showSelections(&mesh);
else
showSelectionsNeighborhood(&mesh);
}
void MainWindow::on_pushButton_facePlus_clicked()
{
// mise à jour de l'interface
faceSelection = faceSelection + 1;
ui->labelFace->setText(QString::number(faceSelection));
// on montre la nouvelle selection
if(!modevoisinage)
showSelections(&mesh);
else
showSelectionsNeighborhood(&mesh);
}
void MainWindow::on_pushButton_afficherChemin_clicked()
{
// on récupère les sommets de départ et d'arrivée
int indexV1 = ui->spinBox_v1_chemin->value();
int indexV2 = ui->spinBox_v2_chemin->value();
showPath(&mesh, indexV1, indexV2);
}
void MainWindow::on_pushButton_chargement_clicked()
{
// fenêtre de sélection des fichiers
QString fileName = QFileDialog::getOpenFileName(this, tr("Open Mesh"), "", tr("Mesh Files (*.obj)"));
// chargement du fichier .obj dans la variable globale "mesh"
OpenMesh::IO::read_mesh(mesh, fileName.toUtf8().constData());
// initialisation des couleurs et épaisseurs (sommets et arêtes) du mesh
resetAllColorsAndThickness(&mesh);
// on affiche le maillage
displayMesh(&mesh);
}
/* **** fin de la partie boutons et IHM **** */
/* **** fonctions supplémentaires **** */
// permet d'initialiser les couleurs et les épaisseurs des élements du maillage
void MainWindow::resetAllColorsAndThickness(MyMesh* _mesh)
{
for (MyMesh::VertexIter curVert = _mesh->vertices_begin(); curVert != _mesh->vertices_end(); curVert++)
{
_mesh->data(*curVert).thickness = 1;
_mesh->set_color(*curVert, MyMesh::Color(0, 0, 0));
}
for (MyMesh::FaceIter curFace = _mesh->faces_begin(); curFace != _mesh->faces_end(); curFace++)
{
_mesh->set_color(*curFace, MyMesh::Color(150, 150, 150));
}
for (MyMesh::EdgeIter curEdge = _mesh->edges_begin(); curEdge != _mesh->edges_end(); curEdge++)
{
_mesh->data(*curEdge).thickness = 1;
_mesh->set_color(*curEdge, MyMesh::Color(0, 0, 0));
}
}
// charge un objet MyMesh dans l'environnement OpenGL
void MainWindow::displayMesh(MyMesh* _mesh, DisplayMode mode)
{
GLuint* triIndiceArray = new GLuint[_mesh->n_faces() * 3];
GLfloat* triCols = new GLfloat[_mesh->n_faces() * 3 * 3];
GLfloat* triVerts = new GLfloat[_mesh->n_faces() * 3 * 3];
int i = 0;
if(mode == DisplayMode::TemperatureMap)
{
QVector<float> values;
for (MyMesh::VertexIter curVert = _mesh->vertices_begin(); curVert != _mesh->vertices_end(); curVert++)
values.append(fabs(_mesh->data(*curVert).value));
qSort(values);
float range = values.at(values.size()*0.8);
MyMesh::ConstFaceIter fIt(_mesh->faces_begin()), fEnd(_mesh->faces_end());
MyMesh::ConstFaceVertexIter fvIt;
for (; fIt!=fEnd; ++fIt)
{
fvIt = _mesh->cfv_iter(*fIt);
if(_mesh->data(*fvIt).value > 0){triCols[3*i+0] = 255; triCols[3*i+1] = 255 - std::min((_mesh->data(*fvIt).value/range) * 255.0, 255.0); triCols[3*i+2] = 255 - std::min((_mesh->data(*fvIt).value/range) * 255.0, 255.0);}
else{triCols[3*i+2] = 255; triCols[3*i+1] = 255 - std::min((-_mesh->data(*fvIt).value/range) * 255.0, 255.0); triCols[3*i+0] = 255 - std::min((-_mesh->data(*fvIt).value/range) * 255.0, 255.0);}
triVerts[3*i+0] = _mesh->point(*fvIt)[0]; triVerts[3*i+1] = _mesh->point(*fvIt)[1]; triVerts[3*i+2] = _mesh->point(*fvIt)[2];
triIndiceArray[i] = i;
i++; ++fvIt;
if(_mesh->data(*fvIt).value > 0){triCols[3*i+0] = 255; triCols[3*i+1] = 255 - std::min((_mesh->data(*fvIt).value/range) * 255.0, 255.0); triCols[3*i+2] = 255 - std::min((_mesh->data(*fvIt).value/range) * 255.0, 255.0);}
else{triCols[3*i+2] = 255; triCols[3*i+1] = 255 - std::min((-_mesh->data(*fvIt).value/range) * 255.0, 255.0); triCols[3*i+0] = 255 - std::min((-_mesh->data(*fvIt).value/range) * 255.0, 255.0);}
triVerts[3*i+0] = _mesh->point(*fvIt)[0]; triVerts[3*i+1] = _mesh->point(*fvIt)[1]; triVerts[3*i+2] = _mesh->point(*fvIt)[2];
triIndiceArray[i] = i;
i++; ++fvIt;
if(_mesh->data(*fvIt).value > 0){triCols[3*i+0] = 255; triCols[3*i+1] = 255 - std::min((_mesh->data(*fvIt).value/range) * 255.0, 255.0); triCols[3*i+2] = 255 - std::min((_mesh->data(*fvIt).value/range) * 255.0, 255.0);}
else{triCols[3*i+2] = 255; triCols[3*i+1] = 255 - std::min((-_mesh->data(*fvIt).value/range) * 255.0, 255.0); triCols[3*i+0] = 255 - std::min((-_mesh->data(*fvIt).value/range) * 255.0, 255.0);}
triVerts[3*i+0] = _mesh->point(*fvIt)[0]; triVerts[3*i+1] = _mesh->point(*fvIt)[1]; triVerts[3*i+2] = _mesh->point(*fvIt)[2];
triIndiceArray[i] = i;
i++;
}
}
if(mode == DisplayMode::Normal)
{
MyMesh::ConstFaceIter fIt(_mesh->faces_begin()), fEnd(_mesh->faces_end());
MyMesh::ConstFaceVertexIter fvIt;
for (; fIt!=fEnd; ++fIt)
{
fvIt = _mesh->cfv_iter(*fIt);
triCols[3*i+0] = _mesh->color(*fIt)[0]; triCols[3*i+1] = _mesh->color(*fIt)[1]; triCols[3*i+2] = _mesh->color(*fIt)[2];
triVerts[3*i+0] = _mesh->point(*fvIt)[0]; triVerts[3*i+1] = _mesh->point(*fvIt)[1]; triVerts[3*i+2] = _mesh->point(*fvIt)[2];
triIndiceArray[i] = i;
i++; ++fvIt;
triCols[3*i+0] = _mesh->color(*fIt)[0]; triCols[3*i+1] = _mesh->color(*fIt)[1]; triCols[3*i+2] = _mesh->color(*fIt)[2];
triVerts[3*i+0] = _mesh->point(*fvIt)[0]; triVerts[3*i+1] = _mesh->point(*fvIt)[1]; triVerts[3*i+2] = _mesh->point(*fvIt)[2];
triIndiceArray[i] = i;
i++; ++fvIt;
triCols[3*i+0] = _mesh->color(*fIt)[0]; triCols[3*i+1] = _mesh->color(*fIt)[1]; triCols[3*i+2] = _mesh->color(*fIt)[2];
triVerts[3*i+0] = _mesh->point(*fvIt)[0]; triVerts[3*i+1] = _mesh->point(*fvIt)[1]; triVerts[3*i+2] = _mesh->point(*fvIt)[2];
triIndiceArray[i] = i;
i++;
}
}
if(mode == DisplayMode::ColorShading)
{
MyMesh::ConstFaceIter fIt(_mesh->faces_begin()), fEnd(_mesh->faces_end());
MyMesh::ConstFaceVertexIter fvIt;
for (; fIt!=fEnd; ++fIt)
{
fvIt = _mesh->cfv_iter(*fIt);
triCols[3*i+0] = _mesh->data(*fvIt).faceShadingColor[0]; triCols[3*i+1] = _mesh->data(*fvIt).faceShadingColor[1]; triCols[3*i+2] = _mesh->data(*fvIt).faceShadingColor[2];
triVerts[3*i+0] = _mesh->point(*fvIt)[0]; triVerts[3*i+1] = _mesh->point(*fvIt)[1]; triVerts[3*i+2] = _mesh->point(*fvIt)[2];
triIndiceArray[i] = i;
i++; ++fvIt;
triCols[3*i+0] = _mesh->data(*fvIt).faceShadingColor[0]; triCols[3*i+1] = _mesh->data(*fvIt).faceShadingColor[1]; triCols[3*i+2] = _mesh->data(*fvIt).faceShadingColor[2];
triVerts[3*i+0] = _mesh->point(*fvIt)[0]; triVerts[3*i+1] = _mesh->point(*fvIt)[1]; triVerts[3*i+2] = _mesh->point(*fvIt)[2];
triIndiceArray[i] = i;
i++; ++fvIt;
triCols[3*i+0] = _mesh->data(*fvIt).faceShadingColor[0]; triCols[3*i+1] = _mesh->data(*fvIt).faceShadingColor[1]; triCols[3*i+2] = _mesh->data(*fvIt).faceShadingColor[2];
triVerts[3*i+0] = _mesh->point(*fvIt)[0]; triVerts[3*i+1] = _mesh->point(*fvIt)[1]; triVerts[3*i+2] = _mesh->point(*fvIt)[2];
triIndiceArray[i] = i;
i++;
}
}
ui->displayWidget->loadMesh(triVerts, triCols, _mesh->n_faces() * 3 * 3, triIndiceArray, _mesh->n_faces() * 3);
delete[] triIndiceArray;
delete[] triCols;
delete[] triVerts;
GLuint* linesIndiceArray = new GLuint[_mesh->n_edges() * 2];
GLfloat* linesCols = new GLfloat[_mesh->n_edges() * 2 * 3];
GLfloat* linesVerts = new GLfloat[_mesh->n_edges() * 2 * 3];
i = 0;
QHash<float, QList<int> > edgesIDbyThickness;
for (MyMesh::EdgeIter eit = _mesh->edges_begin(); eit != _mesh->edges_end(); ++eit)
{
float t = _mesh->data(*eit).thickness;
if(t > 0)
{
if(!edgesIDbyThickness.contains(t))
edgesIDbyThickness[t] = QList<int>();
edgesIDbyThickness[t].append((*eit).idx());
}
}
QHashIterator<float, QList<int> > it(edgesIDbyThickness);
QList<QPair<float, int> > edgeSizes;
while (it.hasNext())
{
it.next();
for(int e = 0; e < it.value().size(); e++)
{
int eidx = it.value().at(e);
MyMesh::VertexHandle vh1 = _mesh->to_vertex_handle(_mesh->halfedge_handle(_mesh->edge_handle(eidx), 0));
linesVerts[3*i+0] = _mesh->point(vh1)[0];
linesVerts[3*i+1] = _mesh->point(vh1)[1];
linesVerts[3*i+2] = _mesh->point(vh1)[2];
linesCols[3*i+0] = _mesh->color(_mesh->edge_handle(eidx))[0];
linesCols[3*i+1] = _mesh->color(_mesh->edge_handle(eidx))[1];
linesCols[3*i+2] = _mesh->color(_mesh->edge_handle(eidx))[2];
linesIndiceArray[i] = i;
i++;
MyMesh::VertexHandle vh2 = _mesh->from_vertex_handle(_mesh->halfedge_handle(_mesh->edge_handle(eidx), 0));
linesVerts[3*i+0] = _mesh->point(vh2)[0];
linesVerts[3*i+1] = _mesh->point(vh2)[1];
linesVerts[3*i+2] = _mesh->point(vh2)[2];
linesCols[3*i+0] = _mesh->color(_mesh->edge_handle(eidx))[0];
linesCols[3*i+1] = _mesh->color(_mesh->edge_handle(eidx))[1];
linesCols[3*i+2] = _mesh->color(_mesh->edge_handle(eidx))[2];
linesIndiceArray[i] = i;
i++;
}
edgeSizes.append(qMakePair(it.key(), it.value().size()));
}
ui->displayWidget->loadLines(linesVerts, linesCols, i * 3, linesIndiceArray, i, edgeSizes);
delete[] linesIndiceArray;
delete[] linesCols;
delete[] linesVerts;
GLuint* pointsIndiceArray = new GLuint[_mesh->n_vertices()];
GLfloat* pointsCols = new GLfloat[_mesh->n_vertices() * 3];
GLfloat* pointsVerts = new GLfloat[_mesh->n_vertices() * 3];
i = 0;
QHash<float, QList<int> > vertsIDbyThickness;
for (MyMesh::VertexIter vit = _mesh->vertices_begin(); vit != _mesh->vertices_end(); ++vit)
{
float t = _mesh->data(*vit).thickness;
if(t > 0)
{
if(!vertsIDbyThickness.contains(t))
vertsIDbyThickness[t] = QList<int>();
vertsIDbyThickness[t].append((*vit).idx());
}
}
QHashIterator<float, QList<int> > vitt(vertsIDbyThickness);
QList<QPair<float, int> > vertsSizes;
while (vitt.hasNext())
{
vitt.next();
for(int v = 0; v < vitt.value().size(); v++)
{
int vidx = vitt.value().at(v);
pointsVerts[3*i+0] = _mesh->point(_mesh->vertex_handle(vidx))[0];
pointsVerts[3*i+1] = _mesh->point(_mesh->vertex_handle(vidx))[1];
pointsVerts[3*i+2] = _mesh->point(_mesh->vertex_handle(vidx))[2];
pointsCols[3*i+0] = _mesh->color(_mesh->vertex_handle(vidx))[0];
pointsCols[3*i+1] = _mesh->color(_mesh->vertex_handle(vidx))[1];
pointsCols[3*i+2] = _mesh->color(_mesh->vertex_handle(vidx))[2];
pointsIndiceArray[i] = i;
i++;
}
vertsSizes.append(qMakePair(vitt.key(), vitt.value().size()));
}
ui->displayWidget->loadPoints(pointsVerts, pointsCols, i * 3, pointsIndiceArray, i, vertsSizes);
delete[] pointsIndiceArray;
delete[] pointsCols;
delete[] pointsVerts;
}
MainWindow::MainWindow(QWidget *parent) : QMainWindow(parent), ui(new Ui::MainWindow)
{
vertexSelection = -1;
edgeSelection = -1;
faceSelection = -1;
modevoisinage = false;
ui->setupUi(this);
}
MainWindow::~MainWindow()
{
delete ui;
}