mod_geo-tp/src/hole_filling.cpp

365 lines
10 KiB
C++

#include "hole_filling.h"
#include "IO.h"
#include "util.h"
#include <MeshReconstruction.h>
#include <OpenMesh/Core/Utils/PropertyManager.hh>
static std::vector<std::vector<HalfedgeHandle>> findHoles(MyMesh &mesh) {
std::vector<std::vector<HalfedgeHandle>> holes;
std::set<HalfedgeHandle> ignore;
for (HalfedgeHandle it : mesh.halfedges()) {
if (mesh.is_boundary(it)
&& ignore.find(it) == ignore.end()) {
holes.emplace_back();
holes.back().push_back(it);
ignore.insert(it);
for (HalfedgeHandle it2 : HalfedgeLoopRange<MyMesh>(mesh, it)) {
holes.back().push_back(it2);
ignore.insert(it2);
}
}
}
return holes;
}
void fillHoleDumb(MyMesh &mesh, std::vector<HalfedgeHandle> &hole) {
mesh.request_vertex_status();
mesh.request_edge_status();
mesh.request_face_status();
Point center(0, 0, 0);
size_t length = 0;
for (HalfedgeHandle it : hole) {
VertexHandle vert = mesh.to_vertex_handle(it);
center += mesh.point(vert);
length++;
}
center /= length;
VertexHandle center_handle = mesh.new_vertex_dirty(center);
mesh.set_color(center_handle, mesh.default_color);
for (HalfedgeHandle it : hole) {
mesh.add_face(mesh.from_vertex_handle(it),
mesh.to_vertex_handle(it),
center_handle);
}
}
void fillHolesDumb(MyMesh &mesh) {
mesh.holes = findHoles(mesh);
for (auto hole : mesh.holes) {
fillHoleDumb(mesh, hole);
}
}
using namespace std ;
using namespace MeshReconstruction;
/* ************** Implicit RBF ************** */
Implicit_RBF::Implicit_RBF(vector<float> alpha, vector<float> beta, vector<MyMesh::Point> center) : _alpha(alpha), _beta(beta), _center(center)
{
_n = _alpha.size() ;
_d = _beta.size() ;
if (_center.size() != _n)
throw runtime_error("Inconsistent size of alpha and centers in Implicit_RBF constructor.");
}
// Computation of the value of the implicit surface at point X
float Implicit_RBF::val(MyMesh::Point X) const
{
float res = 0 ;
// Computation of the sum of RBF at centers
for(int i=0; i<_n; i++)
{
res += _alpha.at(i) * myphi((X-_center.at(i)).norm()) ;
}
// Computation of the polynomial part
for(int j=0; j<_d; j++)
{
res += _beta.at(j) * myp(j, X) ;
}
return res ;
}
/* ************** Hole Filling ************** */
Hole_Filling::Hole_Filling(MyMesh &mesh, float scale, float discr)
: _mesh(mesh),
_scale(scale),
_discr(discr)
{
_mesh.add_property(_vprop, "vprop_flag");
cout << "Starting hole filling ..." << endl ;
}
// ***** Computation of boundary and its neighborhood
MyMesh::HalfedgeHandle Hole_Filling::find_boundary_edge()
{
MyMesh::HalfedgeIter he_it = _mesh.halfedges_begin();
while ( (he_it != _mesh.halfedges_end()) && (!_mesh.is_boundary(*he_it)))
{
++he_it ;
}
if (he_it != _mesh.halfedges_end())
return *he_it ;
else
throw std::runtime_error("Boundary HE does not exist") ;
}
vector<MyMesh::VertexHandle> Hole_Filling::find_boundary(MyMesh::HalfedgeHandle heh)
{
MyMesh::HalfedgeHandle heh_ini = heh ;
vector<MyMesh::VertexHandle> boundary ;
// Follow (and memorize) boundary edges
do
{
boundary.push_back(_mesh.to_vertex_handle(heh));
heh = _mesh.next_halfedge_handle(heh);
} while (heh != heh_ini) ;
return boundary ;
}
void Hole_Filling::init_mark_boundary(const vector<MyMesh::VertexHandle> & bnd)
{
for (MyMesh::VertexIter v_it = _mesh.vertices_begin() ; v_it != _mesh.vertices_end(); ++v_it)
_mesh.property(_vprop, *v_it) = false ;
for (int i=0; i<bnd.size(); ++i)
_mesh.property(_vprop, bnd.at(i)) = true ;
}
vector<MyMesh::VertexHandle> Hole_Filling::next_neighbors(const vector<MyMesh::VertexHandle> & bnd)
{
// Visit bnd vertices to find and mark next circle
vector<MyMesh::VertexHandle> next_bnd ;
for (int i=0; i<bnd.size(); i++)
{
for (MyMesh::VertexVertexIter vv_it = _mesh.vv_iter(bnd.at(i));vv_it.is_valid();++vv_it)
{
if (_mesh.property(_vprop, *vv_it) == false) // new vertex
{
_mesh.property(_vprop, *vv_it) = true ;
next_bnd.push_back(*vv_it);
}
}
}
return next_bnd ;
}
// ***** Computation of RBF
pair<pair<Eigen::MatrixXd &, Eigen::VectorXd &>, vector<MyMesh::Point> &> Hole_Filling::compute_approx_mat(vector<MyMesh::VertexHandle> vlist, double normal_scale)
{
const int n(vlist.size()), d(10) ;
Eigen::MatrixXd & A = *(new Eigen::MatrixXd(3*n+d,3*n+d)) ;
Eigen::MatrixXd Phi(3*n,3*n);
Eigen::MatrixXd P(3*n,d);
Eigen::VectorXd & B = *(new Eigen::VectorXd(3*n+d));
vector<MyMesh::Point> & pts_list = *(new vector<MyMesh::Point>);
//Append vertices to pts_list
for (int i=0; i<n; i++)
{
pts_list.push_back(_mesh.point(vlist.at(i))) ;
}
//Append vertices+normals to pts_list
for (int i=0; i<n; i++)
{
pts_list.push_back(_mesh.point(vlist.at(i)) + _mesh.normal(vlist.at(i)) * normal_scale) ;
}
//Append vertices-normals to pts_list
for (int i=0; i<n; i++)
{
pts_list.push_back(_mesh.point(vlist.at(i)) - _mesh.normal(vlist.at(i)) * normal_scale) ;
}
int nn = pts_list.size() ;
// Compute corresponding B vector (0 / 1 / -1 )
B << Eigen::VectorXd::Zero(n), Eigen::VectorXd::Ones(n), -Eigen::VectorXd::Ones(n), Eigen::VectorXd::Zero(d) ;
// Fill Phi matrix
//TODO
for (int i = 0; i < 3*n; i++) {
for (int j = 0; j <= i; j++) {
Phi(i, j) = myphi((pts_list[i] - pts_list[j]).norm());
Phi(j, i) = Phi(i, j);
}
}
// Fill P matrix
for (int i = 0; i < 3*n; i++) {
for (int j = 0; j < d; j++) {
P(i, j) = myp(j, pts_list[i]);
}
}
// Set final A matrix
/* A = Phi | P
* P' | 0 */
A << Phi, P, P.transpose(), Eigen::MatrixXd::Zero(d, d);
// TODO
cout << "size of pts_list : " << nn << endl ;
cout << "End computation of matrices" << endl ;
return {{A,B},pts_list} ;
}
pair<vector<float>&, vector<float>&> Hole_Filling::solve_approx(const pair<Eigen::MatrixXd &, Eigen::VectorXd &> &p, int n, int d)
{
Eigen::MatrixXd & A = p.first ;
Eigen::VectorXd & B = p.second ;
Eigen::VectorXd res = A.householderQr().solve(B) ;
cout << "End of solver" << endl ;
cout << "res : " << res.head(10) << endl ;
vector<float> & alpha = *(new vector<float>);
vector<float> & beta = *(new vector<float>);
if (res.size() != (n+d))
{
cout << "taille du res : " << res.size() << endl ;
throw std::runtime_error("Error in solve_approx") ;
}
for (int i=0; i<n; i++)
{
alpha.push_back(res(i)) ;
}
for (int j=0; j<d; j++)
{
beta.push_back(res(n+j)) ;
}
return {alpha, beta} ;
}
// ***** IO
void Hole_Filling::colorize_prop()
{
for (MyMesh::VertexIter v_it = _mesh.vertices_begin(); v_it != _mesh.vertices_end() ; ++v_it)
{
if(_mesh.property(_vprop, *v_it) == true)
_mesh.set_color(*v_it, MyMesh::Color(255, 0, 0)) ;
else
_mesh.set_color(*v_it, MyMesh::Color(200, 200, 200)) ;
}
}
void Hole_Filling::colorize_verts(const vector<MyMesh::VertexHandle> &vlist)
{
for (MyMesh::VertexIter v_it = _mesh.vertices_begin(); v_it != _mesh.vertices_end() ; ++v_it)
{
_mesh.set_color(*v_it, MyMesh::Color(200, 200, 200)) ;
}
for(int i=0; i<vlist.size(); i++)
{
_mesh.set_color(vlist.at(i), MyMesh::Color(255, 0, 0)) ;
}
}
Rect3 Hole_Filling::estimate_BB(const vector<MyMesh::VertexHandle> &vlist)
{
MyMesh::Point minp = _mesh.point(vlist.at(0)), maxp=minp ;
for (int i=0; i<vlist.size(); i++)
{
minp = min(minp, _mesh.point(vlist.at(i))) ;
maxp = max(maxp, _mesh.point(vlist.at(i))) ;
}
MyMesh::Point sizep(maxp-minp), centerp = (minp+maxp)/2 ;
minp = centerp - _scale*sizep/2 ;
sizep *= _scale ;
Rect3 domain ;
domain.min = {minp[0], minp[1], minp[2]} ;
domain.size = {sizep[0], sizep[1], sizep[2]} ;
return domain ;
}
Mesh Hole_Filling::poly_n_out(const Implicit_RBF &implicit, Rect3 domain)
{
auto implicitEq = [&implicit](Vec3 const& pos)
{
MyMesh::Point X(pos.x, pos.y, pos.z) ;
return implicit.val(X) ;
};
Vec3 cubeSize(domain.size*(_discr)) ;
cout << "mind " << domain.min << endl ;
cout << "sized" << domain.size << endl ;
cout << "cubesize "<< cubeSize << endl ;
return MarchCube(implicitEq, domain, cubeSize);
}
/* Computes a mesh's bounding box and stores it in a mesh property
* named "bounding_box". */
static void computeMeshBoundingBox(MyMesh &mesh, Hole_Filling &hf) {
try {
auto mesh_bb = OpenMesh::getProperty<void, Rect3>
(mesh, "bounding_box");
} catch (const std::runtime_error &e) {
auto mesh_bb = OpenMesh::getOrMakeProperty<void, Rect3>
(mesh, "bounding_box");
std::vector<VertexHandle> verts;
for (VertexHandle vh : mesh.vertices()) {
verts.push_back(vh);
}
*mesh_bb = hf.estimate_BB(verts);
}
}
MyMesh fillHoleImplicit(MyMesh &mesh, Hole_Filling &hf,
std::vector<HalfedgeHandle> &hole) {
computeMeshBoundingBox(mesh, hf);
Rect3 mesh_bb = *OpenMesh::getProperty<void, Rect3>(mesh, "bounding_box");
double diag = mesh_bb.size.Norm();
std::vector<VertexHandle> verts;
for (HalfedgeHandle hh : hole) {
verts.push_back(mesh.to_vertex_handle(hh));
}
auto bb = hf.estimate_BB(verts) ;
verts = hf.next_neighbors(verts);
auto [system, pts_list] = hf.compute_approx_mat(verts, diag * .1);
auto [alpha, beta] = hf.solve_approx(system, pts_list.size(), 10);
Implicit_RBF rbf(alpha, beta, pts_list);
Mesh filling = hf.poly_n_out(rbf, bb);
MyMesh ret;
for (const Vec3 &v : filling.vertices) {
VertexHandle vh = ret.new_vertex({v.x, v.y, v.z});
ret.set_color(vh, ret.default_color);
}
for (const Triangle &t : filling.triangles) {
ret.add_face(ret.vertex_handle(t[0]),
ret.vertex_handle(t[1]),
ret.vertex_handle(t[2]));
}
return ret;
}
std::vector<MyMesh> fillHolesImplicit(MyMesh &mesh,
float scale, float discr) {
mesh.holes = findHoles(mesh);
std::vector<MyMesh> fillings;
for (auto hole : mesh.holes) {
Hole_Filling hf(mesh, scale, discr);
fillings.push_back(fillHoleImplicit(mesh, hf, hole));
}
return fillings;
}