This repository has been archived on 2020-02-10. You can view files and clone it, but cannot push or open issues or pull requests.
tpmni/3/TP3_voisin.py

199 lines
7.7 KiB
Python
Raw Normal View History

2020-01-29 13:38:50 +01:00
#!/usr/bin/env python3
import sys, os
import matplotlib.pyplot as plt
from random import random, choice
import numpy as np
from time import sleep
import argparse
"""
MNI TP3 - 27 janvier 2020
Dylan Voisin - M1 Informatique Luminy
Franck Palacios - M1 Informatique Luminy
Notes:
- u1 et u2 ne semblent pas orthogonaux, ceci est à la non utilisation
d'une échelle 1:1 pour l'affichage des points
- u1 et u2 ne sont pas proportionnels par rapport à lambda mais à la
distance entre le barycentre et le point le plus éloigné selon la
composante x ou y
- u1 est orienté «vers la droite» et u2 «vers le haut» dans ce programme
"""
def acquérir_depuis_fichier(filename):
# l_pts = []
# with open(filename) as f:
# for line in f:
# split = line.split()
# if len(split) == 2:
# l_pts.append(list(map(float, split)))
# return np.array(l_pts)
return np.loadtxt(filename)
def calc_barycentre(l_pts):
x = sum(l_pts[:,0]) / len(l_pts)
y = sum(l_pts[:,1]) / len(l_pts)
return x, y
def centrer_points(l_pts, barycentre):
return l_pts - barycentre
def calc_matrice_corrélation(l_pts):
c_pts = centrer_points(l_pts, calc_barycentre(l_pts))
A = np.array([
[sum(pt[0] ** 2 for pt in c_pts), sum(pt[0] * pt[1] for pt in c_pts)],
[sum(pt[0] * pt[1] for pt in c_pts), sum(pt[1] ** 2 for pt in c_pts)]
])
return A
def diagonaliser_matrice22(m):
a, b, c, d = m[0][0], m[0][1], m[1][0], m[1][1]
discr = (-d - a) ** 2 - 4 * (a * d - b**2)
lambda1 = ((d + a) + discr ** .5) / 2
lambda2 = ((d + a) - discr ** .5) / 2
if lambda1 != 0:
if a - lambda1 != 0 and b != 0:
u1 = np.array([-b, (a-lambda1)])
u1 *= -1 if b > 0 else 1
else:
u1 = np.array([lambda1, 0])
u2 = np.array([-u1[1], u1[0]])
else:
if a - lambda2 != 0 and b != 0:
u2 = np.array([-b, (a-lambda2)])
u2 *= -1 if b < 0 else 1
else:
u2 = np.array([lambda2, 0])
u1 = np.array([u2[1], -u2[0]])
return u1, u2, lambda1, lambda2
def get_info_affichage(l_pts):
"""renvoie les vecteurs u1 et u2 pour l'affichage ainsi que xmin, xmax, ymin, ymax"""
bary = calc_barycentre(l_pts)
u1, u2 = diagonaliser_matrice22(calc_matrice_corrélation(l_pts))[:2]
dist = min(max(l_pts[:,0]) - bary[0], max(l_pts[:,1]) - bary[1])
dist_x = max(l_pts[:,0]) - min(l_pts[:,0])
dist_y = max(l_pts[:,1]) - min(l_pts[:,1])
x_range = min(l_pts[:,0]) - 0.1 * dist_x, max(l_pts[:,0]) + 0.1 * dist_x
y_range = min(l_pts[:,1]) - 0.1 * dist_y, max(l_pts[:,1]) + 0.1 * dist_y
u1 = u1 / np.linalg.norm(u1) * dist
u2 = u2 / np.linalg.norm(u2) * 1/2 * dist
return u1, u2, x_range, y_range, dist
def visualiser_nuage(l_pts):
bary = calc_barycentre(l_pts)
u1, u2 = diagonaliser_matrice22(calc_matrice_corrélation(l_pts))[:2]
dist = min(max(l_pts[:,0]) - bary[0], max(l_pts[:,1]) - bary[1])
u1 = u1 / np.linalg.norm(u1) * dist
u2 = u2 / np.linalg.norm(u2) * 1/2 * dist
ax = plt.axes()
# plot du nuage
plt.scatter(l_pts[:,0], l_pts[:,1])
ax.arrow(*bary, *u1, head_length=0.1*dist, head_width=0.1*dist, ec="black", fc="white")
ax.arrow(*bary, *u2, head_length=0.1*dist, head_width=0.1*dist, ec="black", fc="white")
# ax.set_aspect('equal')
plt.show()
def animation_nuage(l_pts, loops=10, time_sleep=2, delta_bruit=3):
plt.ion()
fig = plt.figure()
ax = fig.add_subplot(111)
fig.canvas.draw()
# nuage courant (pas de do while en Python)
bary = calc_barycentre(l_pts)
u1, u2, x_range, y_range, dist = get_info_affichage(l_pts)
sc = ax.scatter(l_pts[:,0], l_pts[:,1])
arr1 = ax.arrow(*bary, *u1, head_length=0.1*dist, head_width=0.1*dist, ec="black", fc="white")
arr2 = ax.arrow(*bary, *u2, head_length=0.1*dist, head_width=0.1*dist, ec="black", fc="white")
plt.title("itération 0")
fig.canvas.flush_events()
fig.canvas.draw()
fig.canvas.flush_events()
sleep(time_sleep) # attente avant animation suivante
for i in range(loops):
plt.title("itération " + str(i+1))
# aléa
ran = np.random.random(l_pts.shape) * 2 * delta_bruit - delta_bruit
l_pts += ran
# recalcul des données
bary = calc_barycentre(l_pts)
u1, u2, x_range, y_range, dist = get_info_affichage(l_pts)
ax.set_xlim(*x_range)
ax.set_ylim(*y_range)
# plot
sc.set_offsets(l_pts) # repositionnement des points
arr1.remove() # on enlève les vecteurs
arr2.remove()
arr1 = ax.arrow(*bary, *u1, head_length=0.1*dist, head_width=0.1*dist, ec="black", fc="white")
arr2 = ax.arrow(*bary, *u2, head_length=0.1*dist, head_width=0.1*dist, ec="black", fc="white")
fig.canvas.flush_events()
fig.canvas.draw() # on redessine
fig.canvas.flush_events()
sleep(time_sleep) # attente avant animation suivante
def main(argv):
parser = argparse.ArgumentParser()
gps = parser.add_mutually_exclusive_group(required=True)
2020-01-29 13:48:50 +01:00
gpi = parser.add_mutually_exclusive_group(required=True)
gpi.add_argument("-i", "--input",
2020-01-29 13:38:50 +01:00
help="input file for dots - if none, generate dots")
2020-01-29 13:48:50 +01:00
gpi.add_argument("-f", "--function",
help="function to use to generate dots, ex -f 3*x+4")
parser.add_argument("-N", "--nb-dots", type=int, default=500,
help="number of dots to generate (from 0 to NB_DOTS) from function")
2020-01-29 13:38:50 +01:00
gps.add_argument("-s", "--show", action="store_true",
help="show cloud of dots with u1 and u2")
gps.add_argument("-l", "--loop", type=int, default=10,
help="number of loop to show/perform on randomized dots from originals ones")
parser.add_argument("-d", "--delay", type=float, default=2,
help="amount of time between each loop")
parser.add_argument("-n", "--noise", type = float, default=10,
help="maximum value of the noise applied between each step")
if not argv:
parser.print_usage()
sys.exit(0)
args = parser.parse_args(argv)
if args.input:
if not os.path.isfile(args.input):
print("File", args.input, "not found.", file=sys.stderr)
sys.exit(1)
else:
l_pts = acquérir_depuis_fichier(args.input)
else:
l_pts = []
2020-01-29 13:48:50 +01:00
n = args.nb_dots # nombre de points
f = lambda x: eval(args.function) # fonction génératrice de la ditribution
delta_bruit = 0 # bruit généré, 0 si on en veut aucun
2020-01-29 13:38:50 +01:00
for i in range(n):
y = f(i) + choice((-1, 1)) * random() * delta_bruit/2
l_pts.append([i, y])
l_pts = np.array(l_pts)
if args.show:
visualiser_nuage(l_pts)
elif args.loop:
animation_nuage(l_pts, args.loop, args.delay, args.noise)
if __name__ == "__main__":
# if len(sys.argv) == 2:
# l_pts = acquérir_depuis_fichier(sys.argv[1])
# else:
# l_pts = []
# n = 500 # nombre de points
# f = lambda x: x/2 + 3 # fonction génératrice de la ditribution
# delta_bruit = 10 # bruit généré, 0 si on en veut aucun
# for i in range(n):
# y = f(i) + choice((-1, 1)) * random() * delta_bruit/2
# l_pts.append([i, y])
# l_pts = np.array(l_pts)
# # np.savetxt("pts.txt", l_pts, "%f")
# u1, u2 = diagonaliser_matrice22(calc_matrice_corrélation(l_pts))[:2]
# # print(f"{u1/np.linalg.norm(u1)=}\n{u2/np.linalg.norm(u2)=}")
# visualiser_nuage(l_pts)
# animation_nuage(l_pts, 20, delta_bruit=100)
main(sys.argv[1:])